
Benjamin Gilbert, Dusty Mabe
Presented by

Red Hat

Creative Commons BY-SA 4.0

Building Fedora
CoreOS

Container Linux
Goals

History
Based on ChromiumOS

Inherited many of its design choices
including Gentoo upstream

Epoch: July 1, 2013

85 stable releases, 120 beta, 283+ alpha

Goals
Minimal container-focused server OS for
production use

Clustered deployments

Immutable infrastructure

Automatic updates

Broad platform support

Stable and secure

Production OS
No in-image development tools

...except Git

Not a lot of in-image debugging tools, either

Just enough to talk to your hardware and run
containers

Immutable infra
Node customizations are all encoded in the
provisioning config

You can modify the node afterward, but don’t

Configuration management is an anti-pattern

Automatic updates
Users shouldn’t have to think about updates

No backward compatibility breaks, ever

Old config files must work with new binaries

Must support old bootloaders, cloud agents

Long deprecation windows for services

No regressions, ever

...or users will disable updates

This is the hard part

Platform support
Bare metal: install to disk, live PXE

Clouds: AWS, Azure, DigitalOcean, GCE, Packet,
others

Virt: QEMU, VirtualBox, VMware, OpenStack,
Xen

Container Linux
Install and Update

Partition table
/boot (ESP)

/usr (USR-A)

Immutable OS image (protected with dm-verity)

/usr (USR-B)

/usr/share/oem (OEM)

Platform-specific customizations

/ (ROOT)

User data, including /etc

Install process
The cloud doesn’t have installers

Bare metal shouldn’t either

coreos-install: 350 lines of shell

Runs on any distro

Download, decompress, verify, dd image to disk

Doesn’t work on 4Kn drives

Provisioning
Still need to do the things an installer would do

coreos-cloudinit

That Other cloud-init is written in Python

Write our own! sorta compatibly

Reconfiguring the system halfway through boot is a
bad idea

Especially when it fails

Runs on every boot
Users try to use it for configuration management

Better Provisioning
Ignition

Runs in the initramfs, on first boot

Fetches userdata from the usual places

Can drop files, systemd units, create users &
groups, create partitions and RAID volumes,
reformat your root filesystem

If provisioning fails, so does boot

Atomic updates
Active+passive /usr partitions

Update payload is a kernel and an ext4 filesystem

Easy to understand, but inflexible
Updates overwrite previous version

Rollback is possible for 45 seconds after boot

One update image per architecture

Many install images with different OEM
partitions

Update system
Staged rollouts

Allows monitoring of update status

but really, gives users time to report bugs

Some useful metrics

Breakdown by cloud platform and version

Also stores original install version, last checkin,
update status

If users turn off updates, we don’t get metrics

Update system
Omaha protocol

...modified

update_engine

Complex and unmaintained

CoreUpdate server

has scaling problems

Updating a cluster
Cluster assumed redundant

Okay to reboot nodes on upgrades

So long as we don’t reboot them all at once

locksmith: reboot coordination via etcd

Update system doesn’t talk to the cluster

Nodes don’t drain before reboot

Cluster doesn’t control OS version

Need cluster-level coordination

...which doesn’t get any help from the OS

Automatic updates
Except the OEM partition

and the bootloader

Stray memcpy in GRUB

Automatic rollback
...kinda.

Kernel panic on boot roll back→
Fail to mount root FS roll back→
Fail to start network broken machine→
Fail to start important service broken →
machine

Roll back try to upgrade again→
and don’t report the failure anywhere

No user-specified health checks

Stable

Security updates, bug fixes

Beta

Staging for stable

Security updates, bug fixes

Alpha

Staging for beta + bleeding edge software

Security updates and bug fixes

Regular promotions plus out-of-cycle updates

All channels are expected to work!

Update channels

Testing
CI only; no routine manual testing

Users should run alpha and beta in their
environments

Container Linux
Runtime

CPU architectures
ARM64 added later

Never reached feature parity with AMD64

Bolting on multi-arch support doesn’t work (!)

Container-optimized
Do not run things in the host

Do not run things in the host

We will break things that run in the host

...out-of-tree kernel modules?

Container engines
Everyone wants the latest version of Docker

...except Kubernetes

torcx: Roughly half a package manager

No interpreters
Except bash

and awk

Good

Don’t run stuff in the host!

Smaller image

Smaller attack surface

Bad

Have to rewrite convenient tools in inconvenient
languages

Platform agents
Carried in the OEM partition

...sometimes including Python

Cannot be updated

Sometimes unpleasant

Atomic Host
Design Goals

Download update in the background

Stage new deployment for next reboot

Boot into upgraded deployment

Update Model

Reliable (fault tolerant) Updates

Offline Updates

Security

Design Goals

Reliable (fault tolerant) Updates

Offline Updates

Security

Design Goals

How?

Shrink the base

Leverage containers

Develop image based update system

Design Goals

How?

Reliable (fault tolerant) Updates

Offline Updates

Security

Good Container Host

Design Goals

Reliable (fault tolerant) Updates

Update Model Allows for this
Download update in the background

Stage new deployment for next reboot

Boot into upgraded deployment

Easily roll-back if new update doesn’t work
Userspace: `rpm-ostree rollback`

Boot-loader: 2nd boot-loader entry for fallback

Design Goals

Offline Updates

Update Model Allows for this
Download update in the background

Stage new deployment for next reboot

Boot into upgraded deployment

No software ever runs in half upgraded state

No need to worry about older versions of software
(CVEs) in running apps (in memory)

Design Goals

Security

Smaller base == Less risk

Image based update system
Able to verify server side content matches local checkout

Mount filesystems read only

Leverage SELinux

Design Goals

Good Container Host

Provide Container Runtime(s) for users

Host updates managed by Atomic Host team

Application updates managed by Admin
Applications run in containers

Separation of concerns increases reliability of host
updates

Design Goals

Content Tracking (RPM-OSTree)

Hybrid Approach (not a disk image)
Sits above filesystem

Knows about the software contents (rpms)

Knows about bootloaders

“git for your OS”
ostree repo is like a git repo

refs/branches to follow
checkouts
Rebasing

Share common contents between different deployments
“deduplication”

Atomic Host Structure

Disk Layout

Generic Disk Layout approach
Allows user to configure storage for system

 Partition Based
 LVM
 BTRFS

Configured during install

Mount points
/usr READONLY, /var READ/WRITE

{/home,/mnt,} → /var{/home,/mnt,}

State in /etc is tracked and restored on rollback

Atomic Host Structure

Bootstrapping

Bare Metal
Use Installer ISO (anaconda based)

Cloud
Use cloud-init (baked into OSTree)

Atomic Host Structure

Host Extensibility

Package Layering
Add an RPM to the OSTree as a layer

Mutates the immutable Host in a controlled way

System Containers via Atomic CLI
Grab container images from OCI registry

Easily set up systemd units to run them on boot

Often super privileged (lots of hooks into the Host)

Atomic Host Structure

Atomic Host
What Worked Well

Using Fedora/rpm ecosystem

Consume RPMs, participate in Fedora

Package Layering

Containerizing low level system tools is hard

Package layering helps us get around these issues

“Git for your OS” model

Easy to understand conceptually

Atomic Host: Good

Representing system state in a clear way

Atomic Host: Good

Atomic Host
What Didn’t Work

Well

Lost content in /etc/ problem

Changes to /etc after `rpm-ostree upgrade` lost

Fixed now with staged deployments

Can’t package layer some RPMs

RPM-OSTree strict about contents (/opt, /usr/local)

3rd Party kernel modules

DKMS/Akmods – Don’t work

Atomic Host: Bad

Automatic Update Philosophy

Package layering makes upgrades less reliable

We can only reliably test upgrades of base content

Atomic Host: Bad

Fedora CoreOS

Goal
“An automatically updating, minimal,
monolithic, container-focused operating
system, designed for clusters but also operable
standalone, optimized for Kubernetes but also
great without it.”

Use cases
Primary

Clustered server node for running Kubernetes/OKD

Single server node for running containerized
applications

Secondary

Clustered server node for running non-Kubernetes
container orchestration platforms

Platforms
Same primary platforms as Container Linux

Install process
Something like coreos-install

Fetch image and write to disk

Provisioning
Ignition

Partition layout
Maybe one root partition, maybe root + /var

Automatic updates
rpm-ostree, Fedora RPMs

Rate-limited rollouts

Not with CoreUpdate or Omaha

Cannot break users, ever

Automatic rollback with user-provided health
checks

Update streams
Details TBD

There will be pre-stable streams

Testing
CI

User feedback from pre-stable streams

Metrics
We will have some

Helpful for directing development effort

New system, since we’re not using CoreUpdate

There will be privacy knobs

Container infra
Runtimes

Still need a way to ship both current and ancient
Docker

rkt

Podman

Probably ship kubelet and CRI-O

But they care about the Kubernetes version

Package overlays
Useful for debugging

Maybe needed for alternate
Docker/kubelet/CRI-O

Discouraged for general use

ARM64
Try to ship it

Python
Try not to ship it

Cloud agents
No separate OEM partition

One update image, multiple almost-identical install
images

Ship agents until we can replace them

More thought needed
Better cluster coordination

Reboot coordination, cluster version management

Third-party kernel modules

Thanks!

Creative Commons BY-SA 4.0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

